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Summary. A simple and general scheme to exploit any discrete point group 
symmetry in two-electron integral transformations is introduced. It has been 
implemented together with integral pre-screening techniques in direct two- 
electron integral transformations. Its application has also been extended to 
subseqtjent MO integral processing steps like MP2 or solution of the coupled- 
perturbed Har t r ee -Fock  equations (CPHF). Timings for representative applica- 
tions are presented. 
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I. Introduction 

Orbital and geometry optimizations at the SCF level of theory can today be 
carried out routinely and cheaply for moderately sized molecules (10-30 atoms) 
with the aid of  workstation computers [1], or for bigger molecules (30-100 
atoms) on supercomputers [2]. These applications take advantage of the rapid 
development of CPU technology by employing direct schemes which avoid 
input/output by calculating two-electron integrals over atomic orbitals (AOs) 
whenever needed. This idea has been introduced as the "direct" SCF approach 
by Alml6f et al. [3], and is in contrast to the conventional methods, which 
calculate and store integrals once to retrieve them in each iteration. 

The direct approach has recently been extended to the transformation of  
two-electron integrals from an AO basis set to a molecular orbital basis set (MO) 
[4, 5]. The availability of transformed integrals greatly simplifies calculations 
which account for electron correlation, or which demand many coupled 
Har t r ee -Fock  equations (CPHF)  to be solved, like the simultaneous evaluation 
of  infrared frequencies and intensities [6]. 
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Since the direct SCF idea was first introduced, improved algorithms for the 
evaluation of two-electron integrals [7, 8], enhanced integral pre-screening 
[9, 10], and efficient methods to exploit molecular symmetry [3, 9], have ad- 
vanced the use of direct SCF programs. 

Naturally one asks which of the improvements of the direct SCF scheme can 
be taken over to a direct transformation. Of these the use of molecular symmetry 
is non-trivial and deserves special attention. It is well known that the point group 
D2h and its subgroups are readily utilized in transformation procedures, whereas 
going to higher groups becomes a tedious task, even though the theory for 
general point groups is known [ 11]. An algorithm which retains some simplicity 
and at the same time accounts for some of the more important non-abelian 
groups has been suggested by (~arsky et al. [12]. Their method can be applied to 
direct transformations, but it lacks generality. Other schemes which go beyond 
Ozh require an AO ~ SO (symmetry orbital) transformation first. This hampers 
integral pre-screening, since SOs tend to be more delocalized than AOs. Such 
algorithms seem less suited to a direct scheme. 

Here we introduce a simple and general method to use symmetry in a direct 
AO --, MO transformation of two-electron integrals. 

We finally obtain "packed integrals" in the spirit of Slater-Condon integrals 
[13] or of Pitzer's equal contribution electron repulsion integrals [14], but we 
arrive there without resorting to rigorous coupling algebra. Our approach is 
based upon projecting the integrand in a two-electron MO integral onto its 
totally symmetric part which can be represented as a linear combination of 
symmetry-related integrands. These projectors can easily be constructed from the 
representation matrices. An analysis of their properties (sparsity and low rank) 
provides the tools to set up an efficient but simple algorithm to handle the 
integrals. We present applications of the algorithm to the calculation of the MP2 
correlation energy and the solution of CPHF equations. 

2. Theory 

In our approach complex numbers are completely avoided. Given the molecular 
point group ~ of order g we choose a complete set of non-equivalent real matrix 
representations D rl,  D r2 . . . .  so that F is either irreducible or reducible to a pair 
of complex conjugate one-dimensional representations only. 

The molecular orbitals (MOs) can be chosen to constitute a basis for these 
representations: 

dim(F) 

_~lirT)= ~ [ire)D~(R), (1) 
e = l  

where /~ denotes a symmetry operator, { l iFT) ,  7 = 1 . . . .  , dim(F)} is a set of 
degenerate MOs forming a basis for the irreducible representation F with the 
corresponding matrices D r . 

Similarly, the quadruples of MOs {li, r l y l ) ,  1i2r2 2>, 1i3r3~3), [i4r4~4)), 
71 = 1 . . . . .  dim(rl)  . . . . .  y4 = 1 . . . . .  dim(r4)} define a basis in a (in general 
reducible) representation space S n of the Kronecker product representation: 

/ I  :~-~ r 1 * F 2 * F 3 * F 4 ,  ( 2 )  
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such that for all R e f#: 

O ff,~ (R) = O r ~  (R)D r~2 (R)D ~33y3 (R)D ~rJ~ 4 (R), (3) 

where a = (el, ez, e3, •4), ~ = (])1, ])2, ~23, ])4)" 
Turning now to two-electron integrals formed over quadruples of MOs, we 

introduce as a shorthand notation: 

In ,=(ilr,])l, i2r2])2 [ i3r3])3, i4F474), (4) 

where I is a collective symbol for (il,/2, i3,/4). 
It follows from Eq. (1) that (in symbolic notation, i.e. with the symmetry 

operator applied under the integral sign): 

H H H R L  = (5) 
t7 

We are interested only in non-zero integrals I n # 0 and we can thus trivially 
dismiss all product representations/7 which do not contain the totally symmetric 
representation A. This can quickly be established by character operations. 

If  however /7 contains the totally symmetric representation A n~ times 
(n n > 0), then we need to investigate the product representation space S n. Our 
tool is the operator which projects S n onto its totally symmetric subspace. This 
operator has the matrix representation: 

P ~ ' = ~  L Drip(R)" (6) 

Henceforth we will refer to pn  as the totally symmetric projector. 
Since only the totally symmetric part of  the integrand influences the value of 

I n, we can substitute the integrand by its projection onto the totally symmetric 
subspace of  sH: 

dim(n)  
I n = Z  n n  Io P.~. (7) 

e r = l  

From Eq. (7) we can infer a more stringent necessary condition 1 for an integral 
I n to be non-zero: 

dim(//)  

Qn..= E leo l > o. (8) 
a = l  

It is convenient to define an index set O n, which consists of  all (quadruple) 
indices n = (71, ])2, ])3, ])4) for which ~n > 0, that is, which correspond to integrals 
that contain totally symmetric contributions. Integrals I n with ~z ¢ O n are zero 
and can be discarded beforehand. 

From (7) we can also conclude that integrals In  and I n are equal if 
P f f  = P n  for all a e O n. Again we define a subset R n of O n, containing the 
indices of representative non-equal and non-zero integrals only. Equality to 
within a _+ sign may be treated similarly. 

So far we have exploited the low rank n~ of the projector pn  only partially 
(in many cases n n = 1). We can take full advantage of  it, writing p u  in terms of  
its spectral resolution (in matrix notation): 

p n  = UH2rlUH+, (9) 

1 In general (all four sets of MOs being different) this is also a sufficient condition for the integral 
to be non-zero on symmetry grounds 
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where 2 n is a diagonal matrix with the first nan diagonal elements = 1, the 
remaining being zero. 

It follows that: 
n~ 

p n = ~ U n U n ,  a , Q = l , . . . , d i m ( H ) .  (10) 
~=1 

Equation (7) now splits into two equations: 

r~== E n n  I,~ U~,  v = 1 . . . . .  n n, (11) 
cr~O H 

.7 
I n  Z rn n = L U~, e = 1 . . . . .  dim(//). (12) 

~=1 

We shall refer to the intermediate quantities T~, • = 1 , . . . , n a n ,  as packed 
integrals. While their number, na n , is usually significantly smaller than dim(H), 
all the original integrals can always be recovered- unpacked-  by Eq. (12). In 
actual applications only the representative integrals of R n are unpacked. 

Packing and unpacking are simple procedures with negligible computing 
cost - as will be shown in our numerical analysis. Here we do not go into details 
of the various applications, but instead we show how packing aids the sym- 
metrization step in a direct AO ~ MO two-electron integral transformation. 

The straightforward transformation of the symmetry-distinct and properly 
weighted [15] AO integrals yields what we call skeleton MO integrals ~ ,  
o- ~ O n. These still need to be symmetrized! 

As noticed by Lazzeretti et al. [16], this can be achieved by the formula: 

I ~  Z ~u n O n (13) = I,~ Po~,~, ~ 
o- E 0 I I  

(the formula in Ref. [16] differs slightly in that a, n still run through all 
quadruples a = (el, e2, e3, e4), n = (~1, Y2, Y3, Y4); we also note that the normal- 
ization of the projector differs). 

The similarity between Eqs. (7) and (13) is a consequence of Pitzer's equal 
contribution theorem [17]. Lazzeretti et al. simplified Eq. (13) further for D2h 
and its subgroups, but they did not regard the general case in any more detail. 
(2arsky et al. [12] extended the application of Eq. (13) to some of the more 
important non-abelian point groups. 

We now apply to Eq. (13) the same procedure as previously done to Eq. (6) 
and obtain: 

Z ~'H I1 = I ,  U,~, ~ = 1 , . . . ,  nan (14) 
a~O// 

in close analogy to Eq. (11). That's our symmetrization procedure-  it's simply 
packing the skeleton integrals! (Note that IT has a totally symmetric integrand 
and Pitzer's theorem thus applies.) 

3. Numerical analysis and discussion 

We present detailed timings for an SCF force constant calculation of hexam- 
ethylenetetramine (CH2)6N 4 with the coupled Hartree-Fock step (CPHF) car- 
ried out in the MO basis. The calculations have been done with the program 
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system TURBOMOLE [6] on an Hewlett-Packard HP 835 SRX workstation 
computer. The basis set employed is a 3-21 G, giving rise to 114 orbitals, 
one-third of which are occupied. The symmetry group is Td. 

The following steps have been timed separately: 

(1) Find all product representations /7 = / ' 1  * / ' 2  * /'3 * / '4  which contain the 
totally symmetric representation. For these, evaluate pn according to Eq. (6), 
determine O n, R n, and eigenvectors U n, which are stored as sparse matrices (a 
few kB). 

(2) Evaluate symmetry-distinct AO integrals (v~t IXk ) and transform them to 
"skeleton" MO integrals I~ (a ~ on: all-internals, one-externals, two-externals). 

(3) Symmetrize I~ according to Eq. (14) and store the packed integrals T n on 
disk. 

(4) Construct the A-matrix for CPHF: Aiajb =4(ia [jb)-(ib ] ja)-( i j  lab). 
That is, read packed two-externals, unpack them, form A-matrix, pack A-matrix 
according to Eq. (11) (note that the same procedure works for integrals and 
A-matrix elements!), and store it on disk. (The packed A-matrix takes only 
1.5 MB and could be kept in main memory if desired.) 

(5) Evaluate and process derivatives of one-electron AO integrals [18]. 

(6) Evaluate and process derivatives of two-electron AO integrals [18]. 

(7) Solve CPHF equations using the out of core method proposed by Ahlrichs 
et al. [5], which involves 18 MB I/O in the present case (the equations are solved 
for 3 right-hand sides (which correspond to x, y, z displacements of one nucleus) 
simultaneously: there are 3 symmetry-distinct nuclei and in each case 4 iterations 
sufficed for convergence to 7 significant digits - 3.4.1.5 = 18 MB). 

(8) Process CPHF solutions 

The computational cost of these steps are given in Table 1. Symmetrization, 
packing and unpacking of two-electron MO integrals or A-matrix elements can 
be seen to be a matter of seconds while the whole calculation takes 105 min. It 
should also be recognized that the most expensive step is not yet the transforma- 
tion of the two-electron integrals, but the calculation of AO integral derivatives. 
The CPHF step is comparatively fast. 

We further tested the performance of the force constant evaluation in the 
symmetry groups D2d and D2, comparing computation cost to T d. The respective 
timings listed in Table 2 indicate a symmetry speed up for the transformation 
which is somewhat less than the order of the group: it scales more like the ratio 
of symmetry-distinct AO pairs to total number of pairs. This behavior is what 
one would expect for a direct AO ~ MO transformation and could be improved 

Table 1. Timings of individual steps in a force constant calculation of 
hexamethylenetetramine in Ta-symmetry on a HP 835 SRX workstation 
computer. The steps are explained in the text. Steps marked with an asterisk 
(*) have been performed without using symmetry 

Step 1 1 3 4 5* 6 7 8* 
Time(s) 47 1412 19 37 689 2615 486 1104 
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if an AO ~ SO transformation were done first. There are three reasons to avoid 
an AO ~ SO transformation in a direct algorithm: 

(1) From their calculation SO integrals do not come in an order convenient for 
the immediate SO ~ MO transformation; as a consequence more partially trans- 
formed integrals have to be stored. 

(2) The AO ~ SO transformation becomes expensive as soon as a multiple path 
through the AO integral evaluation is necessary in order to cut down storage 
demand in the subsequent transformation to MO integrals (this applies for 
instance to the amount of half-transformed integrals which are written to direct 
access file in TURBOMOLE [6], or to fully transformed MO integrals to be kept 
in memory in DISCO [19]). 

(3) Integral pre-screening, to be applied for instance to the half-transformed 
integrals (v# ] ij) by means of the bound [6, 9, 10] 

I(vl~ ] ij) ] <~ (vp I vl~)l/2(ij l iJW 2 (15) 

performs better if v, # are AOs than if v, kt are SOs and are thus more 
delocalized. Careful analysis shows that the AO ~ MO transformation becomes 
competitive to the SO ~ MO transformation if pre-screening is used and the 
molecule is large enough. This does not hold for the last quarter transformation, 
since the canonical Har t r ee -Fock  MOs are so delocalized. The last quarter 
transformation, however, is inexpensive as long as the four-external MO inte- 
grals are not needed (a solution appropriate for the evaluation of four-external 
MO integrals would be a symmetrization of the three-quarter transformed 
integrals according to Eq. (14) after an AO ~ S O  transformation of the remain- 
ing AO). 

Table 2. Comparison of performance of a force constant calcula- 
tion with MO-based CPHF, including AO -~ MO transformation of 
two-electron integrals, for hexamethylenetetramine in Td-symmetry 
versus subgroups D2d and D 2. Timings refer to a Hewlett-Packard 
HP 835 SRX workstation computer 

(Sub) Group Ta D2a D2 
Transformation 24'35" 45'10" 74'28" 
A-matrix (packed) 1.5 MB 4.4 MB 8.5 MB 
Second derivatives & CPHF 80'31" 1 6 4 ' 4 7 "  292'20" 
I/O in CPHF 18 MB 88 MB 297 MB 

4. Conclusion 

The construction of projection operators, which project quadruples of molecular 
orbitals onto their totally symmetric part, Eqs. (3, 6, 7), provides a means of 
identifying those two-electron MO integrals, A-matrix elements or similar quan- 
tities, which are zero or equal on symmetry grounds. The factorization of these 
projection operators according to Eqs. (9, 10) serves as a substitute for rigorous 
coupling analysis and makes possible the construction of packed quantities (MO 
integrals), Eq. (11), which are similar to irreducible tensor elements. Packing not 
only reduces the number of quantities to be handled but also results in their 
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symmetrization, Eq. (14), at no extra cost. Unpacking, Eq. (12) supplies the 
(symmetrized) original quantities (MO integrals). Packing and unpacking have 
been shown to take only a negligible amount of computing time and can be 
vectorized by putting molecular shell indices into the innermost loops. These 
techniques have been used to facilitate the symmetrization step in our direct 
A O ~ M O  transformation of two-electron repulsion integrals. Together with 
pre-screening of near-zero integrals the direct AO---} MO transformation be- 
comes competitive with SO-based transformations in the limit of large 
molecules. Packing and unpacking have also been applied to the A-matrix in 
the coupled Hartree-Fock step of a force constant evaluation in order to 
reduce I/O or memory requirements. The relative simplicity of the method 
allows its implementation in existing programs. Presently it is used in the 
program systems TURBOMOLE [6] and DISCO [19]. Some recent applications 
are listed in Table 3. It can be seen how the use of symmetry in the direct 
AO ~ M O  transformation and the subsequent handling of two-electron MO 
integrals advances the applicability of MO-based methods to more than 800 
basis functions. 

Table 3. Applications of the direct AO ~ MO two-electron integral transformations in TURBO- 
MOLE ( = T )  and DISCO ( = D )  which use the symmetry approach proposed in this publication. 
Note that for CPHF one-external, two-external, and all-internal MO integrals have to be evaluated, 
while for MP2 only exchange-type two-externals are needed. For the MP2 applications only active 
orbitals have been included in the counting of occupied molecular orbitals. The computers employed 
are Hewlett-Packard HP 835 SRX (a), Silicon Graphics IRIS-4D/70T (b), SUN microsystems 
SUN-4/280 (c), and Cray-2 (d). The timings for TURBOMOLE include the time for AO integral 
evaluation, whereas DISCO timings are for the transformation part only 

Molecule Symmetry AOs occ. Application Time for Comp. Program 
MOs transform. 

Hexamethylene- T a 114 38 CPHF 1/2 h a T 
tetramine 

Cyclododeca- C4v 152 44 CPHF 4 h b T 
tetraene [20] 

B6HI4 [21] C, 160 22 CPHF 10 h b T 
Cu2(N3H2) 2 [22] D2h 160 52 CPHF 9 h b T 
Ni(CO)4 T a 147 29 MP2 100 rnin b T 
Ce(C8Hs) 2 [23] D8h 359 46 MP2 24 h c T 
C34H36N [24] T d 391 88 MP2 20 min d D 
(C6H6) 2 [25] D6h 636 30 MP2 2 h d D 
C18 [26] D9h 828 36 MP2 5 h d D 
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